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Abstract
We show that the ground state of the well-known pseudo-stationary states for
the Caldirola–Kanai Hamiltonian is a generalized minimum uncertainty state,
which has the minimum allowed uncertainty �q�p = h̄σ0/2, where σ0 (�1)

is a constant depending on the damping factor and natural frequency. The
most general symmetric Gaussian states are obtained as the one-parameter
squeezed states of the pseudo-stationary ground state. It is further shown that
the coherent states of the pseudo-stationary ground state constitute another
class of the generalized minimum uncertainty states.

PACS number: 03.65.Ta

1. Introduction

The Hamiltonian for a harmonic oscillator with an exponentially increasing mass has been
introduced by Caldirola and Kanai [1] and the corresponding Lagrangian by Bateman [2]. The
fact that its classical motion describes a damping motion has motivated the investigation of the
Caldirola–Kanai (CK) Hamiltonian as a quantum damped system [3]. The pseudo-stationary
states of the CK Hamiltonian have been found in many different ways [4–17]. In particular,
the invariant operator method provides a convenient tool to find exact wavefunctions for such
time-dependent oscillators [18]. However, there have been debates whether this quantum
oscillator genuinely describes a dissipative system or not [4, 6, 7, 19].

In this paper we show that all the Gaussian states of the CK Hamiltonian with
〈q̂〉 = 0 = 〈p̂〉 satisfy the generalized minimum uncertainty relation

�q�p � h̄

2
σ0 (σ0 � 1) (1)

where σ0 = 1
/(

1 − γ 2
/

4ω2
0

)1/2
is a constant depending on the damping factor γ and the

natural frequency ω0. It is shown that the pseudo-stationary ground state is the generalized
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minimum uncertainty state (GMUS), a generalization of the minimum uncertainty state with
σ0 = 1 [20]. Using the linear invariant operators [21–23], we find the most general Gaussian
states for the CK Hamiltonian, which have zero moment of position and momentum, and show
that the pseudo-stationary ground state is, in fact, a GMUS. The GMUS that is symmetric
about the origin is interpreted as the vacuum state of a time-dependent oscillator in [22]. We
further show that the coherent states of the pseudo-stationary ground state are also the GMUSs.

2. Squeezed states of pseudo-stationary states

The harmonic oscillator with an exponentially increasing mass m = m0 eγ t has the CK
Hamiltonian

Ĥ (t) = 1

2m0
e−γ t p̂2 +

m0ω
2
0

2
eγ t q̂2. (2)

The Hamilton equations describe a classical damped motion

ü + γ u̇ + ω2
0u = 0. (3)

Now we use the invariant operator method to find exact quantum states of the time-dependent
CK Hamiltonian. For each complex solution u of equation (3), one can introduce a pair of
linear invariant operators [23],

â(t) = i√
h̄

[u∗(t)p̂ − m0 eγ t u̇∗(t)q̂]

â†(t) = − i√
h̄

[u(t)p̂ − m0 eγ t u̇(t)q̂].
(4)

In fact, these operators can be made the time-dependent annihilation and creation operators
satisfying the standard commutation relation at equal time:

[â(t), â†(t)] = 1 (5)

by imposing the Wronskian condition

m0 eγ t [u(t)u̇∗(t) − u∗(t)u̇(t)] = i. (6)

We note that the eigenfunctions of â†(t)â(t), another invariant operator [23],

�n(q, t) =
(

1

2nn!
√

2πh̄u∗u

)1/2 (
u√
u∗u

)n+1/2

Hn

(
q√

2h̄u∗u

)
exp

[
im0 eγ t u̇∗

2h̄u∗ q2

]
(7)

are the exact quantum state of the Schrödinger equation [18]. Hence the task to find the general
wavefunctions is equivalent to finding the general solutions to equation (3). Our stratagem is
to select a complex solution u0 satisfying equation (6) and, as equation (3) is linear, to find the
general solution as a linear superposition of u0 and u∗

0.
For underdamped motion (ω0 > γ/2), we select the solution

u0(t) = e−γ t/2

√
2m0ω

e−iωt ω =
√

ω2
0 − γ 2

4
. (8)

Then the wavefunctions of number states with the solution (8) substituted into equation (7)
yield the pseudo-stationary states [4–17]

�n(q, t) = 1√
2nn!

(
m0ω eγ t

πh̄

)1/4

e−iωt(n+1/2)Hn

(√
m0ω

h̄
eγ tq

)

× exp

[
−m0ω eγ t

2h̄

(
1 + i

γ

2ω

)
q2

]
. (9)
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Now, the general complex solutions satisfying the quantization condition (6) are written as

ur(t) = µu0(t) + νu∗
0(t) (10)

where

|µ|2 − |ν|2 = 1. (11)

The complex µ and ν have four real parameters, one of which is constrained by
equation (11), and another of which can be absorbed into the overall phase of ur and hence
does not change the wavefunctions. However, the relative phase between µ and ν is not
determined by constraints. The squeezing parameters r and φ in the form

µ = cosh r ν = eiφ sinh r (12)

are, in fact, two integration constants of the second-order equation (3). Conversely, given any
complex solution u satisfying equation (6), we can find the corresponding parameters µ and ν

or r and φ. Therefore, the most general solution to equation (3) can be written as

urφ(t) = (cosh r)u0(t) + (eiφ sinh r)u∗
0(t). (13)

That r and φ are the squeezed parameters is understood from the Bogoliubov transformation

ârφ(t) = µ∗â0(t) − ν∗â†
0(t)

â
†
rφ(t) = µâ

†
0(t) − νâ0(t)

(14)

which is obtained by substituting equation (13) into equation (4). The Bogoliubov
transformation is a unitary transformation of â0(t) and â

†
0(t):

ârφ(t) = Û (z, t)â0(t)Û
†(z, t)

â
†
rφ(t) = Û (z, t)â

†
0(t)Û

†(z, t)
(15)

where

Û (t, z) = exp
[

1
2

(
zâ

†2
0 (t) − z∗â2

0(t)
)]

z = ei(φ+π)r (16)

is the squeeze operator [20].
Each pair of squeeze parameters r and φ defines a family of the invariant number operators

N̂ rφ(t) = â
†
rφ(t)ârφ(t). (17)

The number states

N̂ rφ(t)|n, r, φ, t〉 = n|n, r, φ, t〉 (18)

lead to the exact wavefunctions (7) for the Schrödinger equation in the form

�n(q, t, r, φ) = 1√
2nn!

(
Arφ√

π

)1/2

exp(−i	rφ(n + 1/2))Hn(Arφq) exp(−Brφq2) (19)

where

Arφ = 1√
2h̄u∗

rφurφ

=
√

m0ω eγ t

h̄

1

[cosh 2r + sinh 2r cos(2ωt + φ)]1/2

Brφ = imu̇∗
rφ

2h̄u∗
rφ

= m0ω eγ t

2h̄

[
cosh r eiωt − e−iφ sinh r e−iωt

cosh r eiωt + e−iφ sinh r e−iωt
+ i

γ

2ω

]
(20)

	rφ = sin ωt − tanh r sin(ωt + φ)

cos ωt + tanh r cos(ωt + φ)
.
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Here 	rφ is the negative phase of urφ , that is, urφ = ρr exp(−i	rφ). The wavefunctions
(19), which are symmetric about the origin (〈q̂〉 = 〈p̂〉 = 0), are the squeezed states of the
pseudo-stationary states (9). Besides the zero squeezing parameter (r = 0) leading to the
pseudo-stationary states, other interesting squeezing parameters

cosh 2r0 = 1 +
γ 2

8ω2
tan φ0 = 4ω

γ
(21)

lead to simple harmonic wavefunctions at t = 0:

�n(q, t = 0, r0, φ0) = exp

[
−i

γ

4ω

(
n +

1

2

)]

×
{

1√
2nn!

(m0ω

πh̄

)1/4
Hn

(√
m0ω

h̄
q

)
exp

[
−m0ω

2h̄
q2

]}
. (22)

The wavefunctions (19), evolving the harmonic wavefunctions of an undamped (γ = 0)

oscillator at t = 0, differ from those in [11] only by the constant phase factor in equation (22).

3. Generalized minimum uncertainty state

We now find the GMUS satisfying the equality in equation (1) among the wavefunctions (19),
which are symmetric about the origin. The wavefunctions (19) have the uncertainty

(�q)nrφ(�p)nrφ = 〈n, r, φ, t |q̂2|n, r, φ, t〉1/2〈n, r, φ, t |p̂2|n, r, φ, t〉1/2

= h̄

2
sec

(
ϑγ

2

)
[{cosh 2r + sinh 2r cos(2ωt + φ)}

× {cosh 2r − sinh 2r cos(2ωt + φ + ϑγ )}]1/2
(
n + 1

2

)
(23)

where

ϑγ = sin−1

(
γ /ω

1 + γ 2/4ω2

)
= cos−1

(
1 − γ 2/4ω2

1 + γ 2/4ω2

)
(π > ϑγ � 0). (24)

Using equation (23) we find the condition leading to the minimum allowed uncertainty.
First, from (�q)nrφ(�p)nrφ = (�q)0rφ(�p)0rφ(n + 1/2), the ground state (n = 0) has the
lower uncertainty than other excited states (n � 1). Second, for the zero squeezing parameter
(r = 0), the pseudo-stationary ground state �0(q, t) has the generalized minimum uncertainty
at all times

(�q)00φ(�p)00φ = h̄

2
sec

(
ϑγ

2

)
. (25)

Thus the generalized minimum uncertainty (1) is satisfied for

σ0 = sec

(
ϑγ

2

)
= 1(

1 − γ 2/4ω2
0

)1/2 . (26)

Note that the generalized minimum uncertainty approaches the usual minimum uncertainty
(h̄/2) in the weak damping limit (γ /ω0 � 1). Similarly the time averaged uncertainty is

(�q)0rφ(�p)0rφ = h̄

2
sec

(
ϑγ

2

) (
cosh2 r − cos ϑγ

2
sinh2 r

)

� h̄

2
sec

(
ϑγ

2

)
(27)
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where the equality holds for r = 0. Third, in the case of zero damping (γ = 0 = ϑγ ), the CK
Hamiltonian (2) is just a simple (time-independent) harmonic oscillator. Then the uncertainty
relation of q̂ and p̂ in the state (19) is given by

(�q)0rφ(�p)0rφ = h̄

2
[cosh2(2r) − sinh2(2r) cos2(2ωt + φ)]1/2

� h̄

2
. (28)

The generalized minimum uncertainty is achieved either for zero squeezing (r = 0) at all
times or when cos(2ωt + φ) = ±1. Therefore, we conclude that the pseudo-stationary ground
state, which is provided by the zero squeezing (r = 0) solution u0 in equation (8), gives rise to
the GMUS with the centre at the origin. In particular, this GMUS is interpreted as the vacuum
state in [22]. Finally we obtain the Hamiltonian expectation value

〈Ĥ 〉nrφ = h̄ω

2
sec2

(
ϑγ

2

) [
cosh 2r + sinh 2r sin

(
ϑγ

2

)
sin

(
2ωt + φ +

ϑγ

2

)] (
n +

1

2

)
.

(29)

The time averaged 〈Ĥ 〉nrφ has the minimum value for n = r = 0, coinciding with the
generalized minimum uncertainty.

There is another class of GMUSs. It is known that, for a time-independent oscillator, the
coherent states of the vacuum state also have the minimum uncertainty [20]. Now, for the CK
Hamiltonian, we either follow the definition of coherent states [24, 25]

ârφ(t)|α, r, φ, t〉 = α|α, r, φ, t〉 (30)

for any complex α or apply the displacement operator to the ground state in equation (19)

|α, r, φ, t〉 = exp
(
αâ

†
rφ(t) − α∗ârφ(t)

)|0, r, φ, t〉. (31)

Then the generalized coherent states have the expectation values

qc(t) = 〈α, r, φ, t |q̂|α, r, φ, t〉 =
√

h̄(αurφ + α∗u∗
rφ)

pc(t) = 〈α, r, φ, t |p̂|α, r, φ, t〉 =
√

h̄m0 eγ t (αu̇rφ + α∗u̇∗
rφ).

(32)

Here qc and pc describe a trajectory in the phase space for each choice of α and urφ . Replacing
the complex α by two real variables qc and pc, we obtain the wavefunctions for the coherent
states

�(q, t, r, φ, qc, pc) =
(

Arφ√
π

)1/2

Frφ exp(−i	rφ/2) exp(−Brφ(q − qc)
2) exp(ipcq/h̄) (33)

where Arφ, Brφ and 	rφ are given in equation (20) and Frφ is the additional phase factor

Frφ = exp

[
i

2h̄u̇∗
rφu∗

rφ

(
u∗2

rφp2
c − 2u̇∗

rφu∗
rφpcqc

)]
. (34)

It then follows that any coherent state (33) has the same uncertainty as the general Gaussian
state with n = 0 in equation (19):

(�q)αrφ(�p)αrφ = 〈α, r, φ, t |(q̂ − 〈q̂〉)2|α, r, φ, t〉1/2〈α, r, φ, t |(p̂ − 〈p̂〉)2|α, r, φ, t〉1/2

= (�q)0rφ(�p)0rφ. (35)

This implies that the coherent states of the GMUS are also GMUSs. Thus the coherent states of
the pseudo-stationary ground state constitute a family of GMUSs, which is the time-dependent
generalization of a time-independent oscillator [20].



12094 S P Kim

4. Conclusion

We have shown that the Caldirola–Kanai Hamiltonian satisfies the generalized minimum
uncertainty �q�p � h̄σ0/2 for σ0 = 1

/(
1 − γ 2

/
4ω2

0

)1/2
, where γ is the damping factor and

ω0 is the natural frequency. It is found that the well-known pseudo-stationary ground state has
in fact the generalized minimum uncertainty. As the generalized minimum uncertainty state
is uniquely selected for the Caldirola–Kanai Hamiltonian, this pseudo-stationary ground state
may be interpreted as the vacuum state [22]. A one-parameter family of squeezed states of the
pseudo-stationary states is obtained as the most general states with zero moment of position
and moment. Further, it is shown that the coherent states of the pseudo-stationary ground state
are the generalized minimum uncertainty states.
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